Thursday 26 March 2015

Internet Protocol version 6

Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion. IPv6 is intended to replace IPv4.
Every device on the Internet is assigned an IP address for identification and location definition. With the rapid growth of the Internet after commercialization in the 1990s, it became evident that far more addresses than the IPv4 address space has available were necessary to connect new devices in the future. By 1998, the Internet Engineering Task Force (IETF) had formalized the successor protocol. IPv6 uses a 128-bit address, allowing 2128, or approximately 3.4×1038 addresses, or more than 7.9×1028 times as many as IPv4, which uses 32-bit addresses and provides approximately 4.3 billion addresses. The two protocols are not designed to beinteroperable, complicating the transition to IPv6. However, several IPv6 transition mechanisms have been devised to permit communication between IPv4 and IPv6 hosts.
Main Features
IPv6 is an Internet Layer protocol for packet-switched internetworking and provides end-to-end datagram transmission across multiple IP networks, closely adhering to the design principles developed in the previous version of the protocol, Internet Protocol Version 4 (IPv4). IPv6 was first formally described in Internet standard document RFC 2460, published in December 1998.[1] In addition to offering more addresses, IPv6 also implements features not present in IPv4. It simplifies aspects of address assignment (stateless address autoconfiguration), network renumbering, and router announcements when changing network connectivity providers. It simplifies processing of packets in routers by placing the responsibility for packet fragmentation into the end points. The IPv6 subnet size is standardized by fixing the size of the host identifier portion of an address to 64 bits to facilitate an automatic mechanism for forming the host identifier from link layer addressing information (MAC address). Network security was a design requirement of the IPv6 architecture, and included the original specification of IPsec.
IPv6 does not specify interoperability features with IPv4, but essentially creates a parallel, independent network. Exchanging traffic between the two networks requires translator gateways employing one of several transition mechanisms, such as NAT64, or a tunneling protocol like 6to4, 6in4, or Teredo.
Comparison with IPv4
On the Internet, data is transmitted in the form of network packets. IPv6 specifies a new packet format, designed to minimize packet header processing by routers. Because the headers of IPv4 packets and IPv6 packets are significantly different, the two protocols are not interoperable. However, in most respects, IPv6 is an extension of IPv4. Most transport and application-layer protocols need little or no change to operate over IPv6; exceptions are application protocols that embed Internet-layer addresses, such as FTPand NTP, where the new address format may cause conflicts with existing protocol syntax.

Larger address space

The main advantage of IPv6 over IPv4 is its larger address space. The length of an IPv6 address is 128 bits, compared with 32 bits in IPv4.[1] The address space therefore has 2128 or approximately 3.4×1038 addresses.
In addition, the IPv4 address space is poorly allocated, with approximately 14% of all available addresses utilized. While these numbers are large, it was not the intent of the designers of the IPv6 address space to assure geographical saturation with usable addresses. Rather, the longer addresses simplify allocation of addresses, enable efficientroute aggregation, and allow implementation of special addressing features. In IPv4, complex Classless Inter-Domain Routing (CIDR) methods were developed to make the best use of the small address space. The standard size of a subnet in IPv6 is 264 addresses, the square of the size of the entire IPv4 address space. Thus, actual address space utilization rates will be small in IPv6, but network management and routing efficiency are improved by the large subnet space and hierarchical route aggregation.
Renumbering an existing network for a new connectivity provider with different routing prefixes is a major effort with IPv4. With IPv6, however, changing the prefix announced by a few routers can in principle renumber an entire network, since the host identifiers (the least-significant 64 bits of an address) can be independently self-configured by a host.

Multicasting

Multicasting, the transmission of a packet to multiple destinations in a single send operation, is part of the base specification in IPv6. In IPv4 this is an optional although commonly implemented feature. IPv6 multicast addressing shares common features and protocols with IPv4 multicast, but also provides changes and improvements by eliminating the need for certain protocols. IPv6 does not implement traditional IP broadcast, i.e. the transmission of a packet to all hosts on the attached link using a special broadcast address, and therefore does not define broadcast addresses. In IPv6, the same result can be achieved by sending a packet to the link-local all nodes multicast group at addressff02::1, which is analogous to IPv4 multicast to address 224.0.0.1. IPv6 also provides for new multicast implementations, including embedding rendezvous point addresses in an IPv6 multicast group address, which simplifies the deployment of inter-domain solutions.
In IPv4 it is very difficult for an organization to get even one globally routable multicast group assignment, and the implementation of inter-domain solutions is arcane. Unicast address assignments by a local Internet registry for IPv6 have at least a 64-bit routing prefix, yielding the smallest subnet size available in IPv6 (also 64 bits). With such an assignment it is possible to embed the unicast address prefix into the IPv6 multicast address format, while still providing a 32-bit block, the least significant bits of the address, or approximately 4.2 billion multicast group identifiers. Thus each user of an IPv6 subnet automatically has available a set of globally routable source-specific multicast groups for multicast applications.

Stateless address autoconfiguration (SLAAC)

IPv6 hosts can configure themselves automatically when connected to an IPv6 network using the Neighbor Discovery Protocol via Internet Control Message Protocol version 6 (ICMPv6) router discovery messages. When first connected to a network, a host sends a link-local router solicitation multicast request for its configuration parameters; routers respond to such a request with a router advertisement packet that contains Internet Layer configuration parameters.
If IPv6 stateless address autoconfiguration is unsuitable for an application, a network may use stateful configuration with the Dynamic Host Configuration Protocol version 6 (DHCPv6) or hosts may be configured manually using static methods.
Routers present a special case of requirements for address configuration, as they often are sources of autoconfiguration information, such as router and prefix advertisements. Stateless configuration of routers can be achieved with a special router renumbering protocol.

Network-layer security

Internet Protocol Security (IPsec) was originally developed for IPv6, but found widespread deployment first in IPv4, for which it was re-engineered. IPsec was a mandatory specification of the base IPv6 protocol suite, but has since been made optional.

Simplified processing by routers

In IPv6, the packet header and the process of packet forwarding have been simplified. Although IPv6 packet headers are at least twice the size of IPv4 packet headers, packet processing by routers is generally more efficient, thereby extending the end-to-end principle of Internet design. Specifically:
  • The packet header in IPv6 is simpler than that used in IPv4, with many rarely used fields moved to separate optional header extensions.
  • IPv6 routers do not perform fragmentation. IPv6 hosts are required to either perform path MTU discovery, perform end-to-end fragmentation, or to send packets no larger than the IPv6 default MTU size of 1280 octets.
  • The IPv6 header is not protected by a checksum; integrity protection is assumed to be assured by both link-layer and higher-layer (TCP, UDP, etc.) error detection. UDP/IPv4 may actually have a checksum of 0, indicating no checksum; IPv6 requires UDP to have its own checksum. Therefore, IPv6 routers do not need to recompute a checksum when header fields (such as the time to live (TTL) or hop count) change. This improvement may have been made less necessary by the development of routers that perform checksum computation at link speed using dedicated hardware, but it is still relevant for software-based routers.
  • The TTL field of IPv4 has been renamed to Hop Limit in IPv6, reflecting the fact that routers are no longer expected to compute the time a packet has spent in a queue.

Mobility

Unlike mobile IPv4, mobile IPv6 avoids triangular routing and is therefore as efficient as native IPv6. IPv6 routers may also allow entire subnets to move to a new router connection point without renumbering.

Options extensibility

The IPv6 packet header has a fixed size (40 octets). Options are implemented as additional extension headers after the IPv6 header, which limits their size only by the size of an entire packet. The extension header mechanism makes the protocol extensible in that it allows future services for quality of service, security, mobility, and others to be added without redesign of the basic protocol.

Jumbograms

IPv4 limits packets to 65535 (216−1) octets of payload. An IPv6 node can optionally handle packets over this limit, referred to as jumbograms, which can be as large as4294967295 (232−1) octets. The use of jumbograms may improve performance over high-MTU links. The use of jumbograms is indicated by the Jumbo Payload Option header.

Privacy

Like IPv4, IPv6 supports globally unique IP addresses by which the network activity of each device can potentially be tracked. The design of IPv6 intended to re-emphasize the end-to-end principle of network design that was originally conceived during the establishment of the early Internet. In this approach each device on the network has a unique address globally reachable directly from any other location on the Internet.
  • Network prefix
Network prefix tracking is less of a concern if the user's ISP assigns a dynamic network prefix via DHCP. Privacy extensions do little to protect the user from tracking if the ISP assigns a static network prefix. In this scenario, the network prefix is the unique identifier for tracking and the interface identifier is secondary.
  • Interface identifier
In IPv4 the effort to conserve address space with network address translation (NAT) obfuscates network address spaces, hosts, and topologies. In IPv6 when using address auto-configuration, the Interface Identifier (MAC address) of an interface port is used to make its public IP address unique, exposing the type of hardware used and providing a unique handle for a user's online activity.
It is not a requirement for IPv6 hosts to use address auto-configuration, however. Yet, even when an address is not based on the MAC address, the interface's address is globally unique, in contrast to NAT-masqueraded private networks. Privacy extensions for IPv6 have been defined to address these privacy concerns, although Silvia Hagen describes these as being largely due to "misunderstanding". When privacy extensions are enabled, the operating system generates random host identifiers to combine with the assigned network prefix. These ephemeral addresses are used to communicate with remote hosts making it more difficult to track a single device.
Packet Format
An IPv6 packet has two parts: a header and payload.
The header consists of a fixed portion with minimal functionality required for all packets and may be followed by optional extensions to implement special features.
The fixed header occupies the first 40 octets (320 bits) of the IPv6 packet. It contains the source and destination addresses, traffic classification options, a hop counter, and the type of the optional extension or payload which follows the header. This Next Header field tells the receiver how to interpret the data which follows the header. If the packet contains options, this field contains the option type of the next option. The "Next Header" field of the last option, points to the upper-layer protocol that is carried in the packet's payload.
Extension headers carry options that are used for special treatment of a packet in the network, e.g., for routing, fragmentation, and for security using the IPsec framework.
Without special options, a payload must be less than 64KB. With a Jumbo Payload option (in a Hop-By-Hop Options extension header), the payload must be less than 4 GB.
Unlike with IPv4, routers never fragment a packet. Hosts are expected to use Path MTU Discovery to make their packets small enough to reach the destination without needing to be fragmented.


No comments:

Post a Comment