Wednesday 4 March 2015

Open Shortest Path First (OSPF)

Open Shortest Path First (OSPF) is a routing protocol developed for Internet Protocol (IP) networks by the Interior Gateway Protocol (IGP) working group of the Internet Engineering Task Force (IETF). The working group was formed in 1988 to design an IGP based on the Shortest Path First (SPF) algorithm for use in the Internet. Similar to the Interior Gateway Routing Protocol (IGRP), OSPF was created because in the mid-1980s, the Routing Information Protocol (RIP) was increasingly incapable of serving large, heterogeneous internetworks. This chapter examines the OSPF routing environment, underlying routing algorithm, and general protocol components.

Background: - OSPF was derived from several research efforts, including Bolt, Beranek, and Newman's (BBN's) SPF algorithm developed in 1978 for the ARPANET (a landmark packet-switching network developed in the early 1970s by BBN), Dr. Radia Perlman's research on fault-tolerant broadcasting of routing information (1988), BBN's work on area routing (1986), and an early version of OSI's Intermediate System-to-Intermediate System (IS-IS) routing protocol.
OSPF has two primary characteristics. The first is that the protocol is open, which means that its specification is in the public domain. The OSPF specification is published as Request For Comments (RFC) 1247. The second principal characteristic is that OSPF is based on the SPF algorithm, which sometimes is referred to as the Dijkstra algorithm, named for the person credited with its creation.
OSPF is a link-state routing protocol that calls for the sending of link-state advertisements (LSAs) to all other routers within the same hierarchical area. Information on attached interfaces, metrics used, and other variables is included in OSPF LSAs. As OSPF routers accumulate link-state information, they use the SPF algorithm to calculate the shortest path to each node.
As a link-state routing protocol, OSPF contrasts with RIP and IGRP, which are distance-vector routing protocols. Routers running the distance-vector algorithm send all or a portion of their routing tables in routing-update messages to their neighbors.
Routing Process: - Unlike RIP, OSPF can operate within a hierarchy. The largest entity within the hierarchy is the autonomous system (AS), which is a collection of networks under a common administration that share a common routing strategy. OSPF is an intra-AS (interior gateway) routing protocol, although it is capable of receiving routes from and sending routes to other ASs.
An AS can be divided into a number of areas, which are groups of contiguous networks and attached hosts. Routers with multiple interfaces can participate in multiple areas. These routers, which are called Area Border Routers, maintain separate topological databases for each area.
A topological database is essentially an overall picture of networks in relationship to routers. The topological database contains the collection of LSAs received from all routers in the same area. Because routers within the same area share the same information, they have identical topological databases.
The term domain sometimes is used to describe a portion of the network in which all routers have identical topological databases. Domain is frequently used interchangeably with AS.
An area's topology is invisible to entities outside the area. By keeping area topologies separate, OSPF passes less routing traffic than it would if the AS were not partitioned.
Area partitioning creates two different types of OSPF routing, depending on whether the source and the destination are in the same or different areas. Intra-area routing occurs when the source and destination are in the same area; interarea routing occurs when they are in different areas.
An OSPF backbone is responsible for distributing routing information between areas. It consists of all Area Border Routers, networks not wholly contained in any area, and their attached routers.
In the figure, routers 4, 5, 6, 10, 11, and 12 make up the backbone. If Host H1 in Area 3 wants to send a packet to Host H2 in Area 2, the packet is sent to Router 13, which forwards the packet to Router 12, which sends the packet to Router 11. Router 11 then forwards the packet along the backbone to Area Border Router 10, which sends the packet through two intra-area routers (Router 9 and Router 7) to be forwarded to Host H2.
The backbone itself is an OSPF area, so all backbone routers use the same procedures and algorithms to maintain routing information within the backbone that any area router would. The backbone topology is invisible to all intra-area routers, as are individual area topologies to the backbone.
Areas can be defined in such a way that the backbone is not contiguous. In this case, backbone connectivity must be restored through virtual links. Virtual links are configured between any backbone routers that share a link to a nonbackbone area and function as if they were direct links.
Figure: An OSPF AS Consists of Multiple Areas Linked by Routers shows an example of an internetwork with several areas.
Figure: An OSPF AS Consists of Multiple Areas Linked by Routers
CT844601.jpg
AS border routers running OSPF learn about exterior routes through exterior gateway protocols (EGPs), such as Exterior Gateway Protocol (EGP) or Border Gateway Protocol (BGP), or through configuration information. For more information about these protocols.

No comments:

Post a Comment