Wednesday 25 February 2015

Enhanced Interior Gateway Routing Protocol (EIGRP)

The Enhanced Interior Gateway Routing Protocol (EIGRP) represents an evolution from its predecessor IGRP (refer to Interior Gateway Routing Protocol). This evolution resulted from changes in networking and the demands of diverse, large-scale internetworks. EIGRP integrates the capabilities of link-state protocols into distance vector protocols. Additionally, EIGRP contains several important protocols that greatly increase its operational efficiency relative to other routing protocols. One of these protocols is the Diffusing update algorithm (DUAL) developed at SRI International by Dr. J.J. Garcia-Luna-Aceves. DUAL enables EIGRP routers to determine whether a path advertised by a neighbor is looped or loop-free, and allows a router running EIGRP to find alternate paths without waiting on updates from other routers.
EIGRP provides compatibility and seamless interoperation with IGRP routers. An automatic-redistribution mechanism allows IGRP routes to be imported into EIGRP, and vice versa, so it is possible to add EIGRP gradually into an existing IGRP network. Because the metrics for both protocols are directly translatable, they are as easily comparable as if they were routes that originated in their own autonomous systems (ASs). In addition, EIGRP treats IGRP routes as external routes and provides a way for the network administrator to customize them.
This article provides an overview of the basic operations and protocol characteristics of EIGRP.

Capabilities and Attributes:-

Key capabilities that distinguish EIGRP from other routing protocols include fast convergence, support for variable-length subnet mask, support for partial updates, and support for multiple network layer protocols.
A router running EIGRP stores all its neighbors' routing tables so that it can quickly adapt to alternate routes. If no appropriate route exists, EIGRP queries its neighbors to discover an alternate route. These queries propagate until an alternate route is found.
Its support for variable-length subnet masks permits routes to be automatically summarized on a network number boundary. In addition, EIGRP can be configured to summarize on any bit boundary at any interface.
EIGRP does not make periodic updates. Instead, it sends partial updates only when the metric for a route changes. Propagation of partial updates is automatically bounded so that only those routers that need the information are updated. As a result of these two capabilities, EIGRP consumes significantly less bandwidth than IGRP.
EIGRP includes support for AppleTalk, IP, and Novell NetWare. The AppleTalk implementation redistributes routes learned from the Routing Table Maintenance Protocol (RTMP). The IP implementation redistributes routes learned from OSPF, Routing Information Protocol (RIP), Intermediate System-to-Intermediate System (IS-IS), Exterior Gateway Protocol (EGP), or Border Gateway Protocol (BGP). The Novell implementation redistributes routes learned from Novell RIP or Service Advertisement Protocol (SAP).

Underlying Processes and Technologies: -

To provide superior routing performance, EIGRP employs four key technologies that combine to differentiate it from other routing technologies: neighbor discovery/recovery, reliable transport protocol (RTP), DUAL finite-state machine, and protocol-dependent modules.
The neighbor discovery/recovery mechanism enables routers to dynamically learn about other routers on their directly attached networks. Routers also must discover when their neighbors become unreachable or inoperative. This process is achieved with low overhead by periodically sending small hello packets. As long as a router receives hello packets from a neighboring router, it assumes that the neighbor is functioning, and the two can exchange routing information.
Reliable Transport Protocol (RTP) is responsible for guaranteed, ordered delivery of EIGRP packets to all neighbors. It supports intermixed transmission of multicast or unicast packets. For efficiency, only certain EIGRP packets are transmitted reliably. On a multiaccess network that has multicast capabilities, such as Ethernet, it is not necessary to send hello packets reliably to all neighbors individually. For that reason, EIGRP sends a single multicast hello packet containing an indicator that informs the receivers that the packet need not be acknowledged. Other types of packets, such as updates, indicate in the packet that acknowledgment is required. RTP contains a provision for sending multicast packets quickly when unacknowledged packets are pending, which helps ensure that convergence time remains low in the presence of varying speed links.
The DUAL finite-state machine embodies the decision process for all route computations by tracking all routes advertised by all neighbors. DUAL uses distance information to select efficient, loop-free paths and selects routes for insertion in a routing table based on feasible successors. A feasible successor is a neighboring router used for packet forwarding that is a least-cost path to a destination that is guaranteed not to be part of a routing loop. When a neighbor changes a metric, or when a topology change occurs, DUAL tests for feasible successors. If one is found, DUAL uses it to avoid recomputing the route unnecessarily. When no feasible successors exist but neighbors still advertise the destination, a recomputation (also known as a diffusing computation) must occur to determine a new successor. Although recomputation is not processor-intensive, it does affect convergence time, so it is advantageous to avoid unnecessary recomputations.
Protocol-dependent modules are responsible for network layer protocol-specific requirements. The IP-EIGRP module, for example, is responsible for sending and receiving EIGRP packets that are encapsulated in IP. Likewise, IP-EIGRP is also responsible for parsing EIGRP packets and informing DUAL of the new information that has been received. IP-EIGRP asks DUAL to make routing decisions, the results of which are stored in the IP routing table. IP-EIGRP is responsible for redistributing routes learned by other IP routing protocols.

No comments:

Post a Comment