Monday 9 February 2015

Routing Metric

Routing tables contain information used by switching software to select the best route. But how, specifically, are routing tables built? What is the specific nature of the information that they contain? How do routing algorithms determine that one route is preferable to others?

Routing algorithms have used many different metrics to determine the best route. Sophisticated routing algorithms can base route selection on multiple metrics, combining them in a single (hybrid) metric. All the following metrics have been used:
  • Path length
  • Reliability
  • Delay
  • Bandwidth
  • Load
  • Communication cost
Path length is the most common routing metric. Some routing protocols allow network administrators to assign arbitrary costs to each network link. In this case, path length is the sum of the costs associated with each link traversed. Other routing protocols define hop count, a metric that specifies the number of passes through internetworking products, such as routers, that a packet must take en route from a source to a destination.
Reliability, in the context of routing algorithms, refers to the dependability (usually described in terms of the bit-error rate) of each network link. Some network links might go down more often than others. After a network fails, certain network links might be repaired more easily or more quickly than other links. Any reliability factors can be taken into account in the assignment of the reliability ratings, which are arbitrary numeric values usually assigned to network links by network administrators.
Routing delay refers to the length of time required to move a packet from source to destination through the internetwork. Delay depends on many factors, including the bandwidth of intermediate network links, the port queues at each router along the way, network congestion on all intermediate network links, and the physical distance to be traveled. Because delay is a conglomeration of several important variables, it is a common and useful metric.
Bandwidth refers to the available traffic capacity of a link. All other things being equal, a 10-Mbps Ethernet link would be preferable to a 64-kbps leased line. Although bandwidth is a rating of the maximum attainable throughput on a link, routes through links with greater bandwidth do not necessarily provide better routes than routes through slower links. For example, if a faster link is busier, the actual time required to send a packet to the destination could be greater.
Load refers to the degree to which a network resource, such as a router, is busy. Load can be calculated in a variety of ways, including CPU utilization and packets processed per second. Monitoring these parameters on a continual basis can be resource-intensive itself.
Communication cost is another important metric, especially because some companies may not care about performance as much as they care about operating expenditures. Although line delay may be longer, they will send packets over their own lines rather than through the public lines that cost money for usage time.

Network Protocol

Routed protocols are transported by routing protocols across an internetwork. In general, routed protocols in this context also are referred to as network protocols. These network protocols perform a variety of functions required for communication between user applications in source and destination devices, and these functions can differ widely among protocol suites. Network protocols occur at the upper five layers of the OSI reference model: the network layer, the transport layer, the session layer, the presentation layer, and the application layer.
Confusion about the terms routed protocol and routing protocol is common. Routed protocols are protocols that are routed over an internetwork. Examples of such protocols are the Internet Protocol (IP), DECnet, AppleTalk, Novell NetWare, OSI, Banyan VINES, and Xerox Network System (XNS). Routing protocols, on the other hand, are protocols that implement routing algorithms. Put simply, routing protocols are used by intermediate systems to build tables used in determining path selection of routed protocols. Examples of these protocols include Interior Gateway Routing Protocol (IGRP), Enhanced Interior Gateway Routing Protocol (Enhanced IGRP), Open Shortest Path First (OSPF), Exterior Gateway Protocol (EGP), Border Gateway Protocol (BGP), Intermediate System-to-Intermediate System (IS-IS), and Routing Information Protocol (RIP). Routed and routing protocols are discussed in detail later in this book.

No comments:

Post a Comment